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A Derivation of the Optimum Continuous Linear Estimator
for Systems with Correlated Measurement Noise

J. J. DEYST*
Massachusetts Institute of Technology, Cambridge, Mass.

A derivation is presented for differential equations describing the minimum-variance con-
tinuous linear filter for separating signals from additive correlated noise. The filter equations
are derived by applying discrete time-optimum estimation formulas and taking appropriate
limits. If the measurements available to the filter do not all contain first integrals of white
noise, the equations are singular and it is shown that the optimum filter must be preceded by
successive differentiations until first integrals of white noise are attained. A method is pre-
sented for reducing the order of the equations by the number of input processes available to
the filter. Consideration is also given to the filter startup procedure, and it is found that ap-
propriate initial conditions cannot be determined a priori, but are functions of the initial
values of the measurements.

I. Introduction

IN a number of filtering problems, measurement noise
superimposed on signal processes is correlated in time.

Bryson and Henrikson1 have solved the discrete correlated
measurement noise problem. In the continuous correlated
noise case, the filter equations developed by Kalman and
Bucy6 are singular. Bucy3 considers the correlated noise
filter and obtains filter equations. Bryson and Johansen2

develop a method of differentiating the measurement pro-
cesses to attain white noise in the measurements. The Kal-
man-Bucy white noise filter is then applied to the resulting
system to produce the minimum-variance estimator.

The purpose of this paper is to offer an alternative deriva-
tion of the minimum-variance continuous correlated measure-
ment noise filter. The derivation is straightforward and may
provide insight into the filtering problem. Furthermore,
the derivation does not involve differentiation of first inte-
grals of white noise and hence evades questions of existence of
iiiich derivatives.

II, Problem Statement

Let x(t) represent the Mil-order state vector of a dynamical
system satisfying the differential equation f

*«) = F(t)x(t) + q(t) (1)
where

x(t) = system state vector of dimension k
F(t) = system dynamics matrix (k X k),

continuous with continuous derivative
q(t) ^ white Gaussian process noise of dimension k

and the process noise statistics are

E(q(t)] = 0, E[q(t)qT(t + r)] = Q(t)8(r)
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f Equation (1) is more correctly written as a stochastic dif-
ferential equation with the forcing term defined as Brownian mo-
tion. It is to be understood that q(t) is the formal derivative of
Brownian motion. Solutions of Eq. (1) are defined in terms of
stochastic integrals,

Q(t) = non-negative-definite matrix (k X k)
continuous with continuous derivative

d(r) = Dirac delta function

Measurements available to the filter are composed of linear
combinations of elements of x(t). Thus if m(t) is the vector of
measurement processes available to the filter then

m(t) = H(t)x(t) (2)
where H(i) = measurement matrix (p X k ) , continuous with
continuous first and second derivatives.

Equations (1) and (2) define the basic filtering problem to
be solved. If H(t) is a square, nonsingular matrix, then the
problem is trivial because x(t) is obtained directly from m(t)
by inverting H(t). Of interest, in terms of filter theory, are
those cases for which H(t) has more columns than linearly
independent rows. Thus the filtering problem is to estimate
x(t) from measurements comprised of linear combinations of
its elements. Minimum mean square error is chosen as the
criterion for optimal estimation. Since all processes are
Gaussian, the optimal estimate is the mean of x(t) condi-
tioned on the measurement history;

x(t) = E[x(t)\m(T)], 0 < r < t

The problem of estimating signals in the presence of cor-
related measurement noise is a special case of the system (1),
(2). Let xi(t) be the system state to be estimated and assume
it satisfies the differential equation

Similarly, let the correlated measurement noise be generated
by a system whose state is x%(t) where

£2(0 = ^2(0^2(0 + #2(0 (4)
and 0i (0, 02 (0 are independent Gaussian white noises

E[qi(t)] = 0, E[qi(t)q^(t + r)] = Qi(0«(r)

E[q*(t)] = 0, E[q,(t)q^(t + r)] = Q*(t)d(r)

E[qi(t)q*T(t + r)] = 0

Measurements available to the filter are comprised of linear
combinations of elements of xi(t) corrupted by elements of

m(t) = #1(0si(0 + #2(0*2(0 (5)

The problem posed by (3-5) may be readily cast into the form
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<1), (2) by denning

0 F,(t)
(6)
(7)
(8)

(9)
2i(0 0 1
0 Q2(0j

Thus the separation of signals from correlated noise is a special
case of estimating a state from linear combinations of its
elements. Furthermore, since x(t) contains both system and
noise state vectors, the filter will generate estimates of both
the signal and noise processes.

III. Discrete Estimation

As a first step in the development, equations for discrete
-estimation of x(t) will be obtained. Consider a partition of
time into increments A£ where

At = tn - tn-l (10)

Solutions of (1) evaluated at points tn may be written in re-
cursive form as

X(tn) = $(tn,tn-l)x(tn-l) + v(tn)

where <£ is the state transition matrix satisfying

*(M<) = I (12)
.and the v(tn) are Gaussian vector valued random variables
with statistics

E[v(tn)] = 0, E[v(tn)vT(tn)] = 0, m ^ n

E[v(tn)vT(tn)] = V(tn) = f * 3>(^,T)Q(T)<l>r(Zn)T)dT
J tn-l

Assuming measurement information is not continuous, but
measurements are taken at discrete times tn, the measure-
ment equation is written as

tn) = H(tn)x(tn) (13)
Recursion formulas for optimally estimating x(tn) from the

•discrete measurements m(tn) were derived by Kalman.7
Applying these equations to the system (11), (13) obtains

X(tn) = X'(tn) + Pf(QHT(tn}[H(tn)P'(tn}HT(tn}}-1 X

X'(tn) =

(14)

(15)

Q = P'(tn) ~ X

H(tn)P'(Q (16)
l)$r(Mn-l) + V(tn} (1?)

*(0) = E[x(0)], P(0) = cov[s(0)]
where x(tn) is the minimum variance estimate of x(tn) and
P(tn) is the covariance of errors in the estimate.

IV. Continuous Estimation

For a particular realization of the x(t) process and resulting
m(t) process, a partition of time intoj steps yields a particular
•estimate Xj(t). If an appropriate sequence of finer and finer
partitions is constructed, implying more and more measure-
ments, it can be shown J that the sequence of estimates

J Proof of convergence depends upon the fact that the sequence
£3-(t) is a martingale and
lim E[x(t)\m(ti\m(tz),.. .m(t,-)] = E[x(t)\m(r)] = &(t)
J->00

0 < ti < tt < . . . <tj < t, 0 < T < t

See Wonham* or Doob.5

Xj(t) converges to a limit x(t). The object, in what follows, is
to derive equations for determining this limit.

The discrete estimation formulas (14-17) are applied to the
task of determining x(t). Defining matrices A(tn) and B(tn) as

A ( j. \ __ T)t // \ TJTI'-t \ f ~LJ (4. \ ~D f (4 \ ~LJT(-t \1 —1 /1Q\
•£*-\yn) — -t \yn)-El \"n) \*-*- \vn)*L \inJJLl \yn) J ^J-Oy

B(tn) = I ~ A(tn)H(tn) (19)

It can be readily shown that
H(tn)A(tn) = I, B(tn)A(tn) = 0, B(Q* = B(tn) (20)

and (14) may be written as
x(tn) = B(tn)x'(tn) + A(tn)m(tn) (21)

Multiplying (21) by B(tn) and using (20) yields

Now (22) must hold at each measurement and in particular
at tn-i

Also, since the state transition matrix has a continuous de-
rivative (12), Eq. (15) may be written as

x'(tn) = [I + F(T)$(r,^i)A«]x(*n-i), <n-i <r<tn (24)
Multiplying (24) through by B(tn) and subtracting (23) yields
B(tn)x'(tn) - B(tn^x'(tn-^ = [B(tJ ~ B(tn-l) +

B(«B)F(r)$(r,^i) M]x(tn-d (25)
It will be assumed, for the time being, that B(t) exists and
has a continuous derivative. Then by defining

y(tn) = B(W(tJ (26)
substituting into (25), dividing through by A£, and taking the
limit as A£ -* 0 one obtains the differential equation

y(t) = [B(t) + B(t)F(t)]x(t)

Further, substituting (26) into (21) yields

z(0 = y(f) + A(t)m(t)

(27)

(28)
and from the definitions (1) and (2), m(t) is continuous, with
probability one so x(t) and y(t) will be continuous if it can be
shown that A(t) and B(t) are continuous.

Equations (27) and (28) determine the basic form of the
correlated measurement noise filter. The remaining problem
is to derive expressions for A(t), B(t), and B(t) and demon-
strate continuity. From (16) it is clear that

H(tn-l)P(tn-l) = 0 (29)

and expressions for P'(tn) and H(tn) can be written as

P'(tn) = P(tn-l) + [F(tn^P(tn-l) +

P(tn-l}FT(tn-l} + Q(*n-l)]A* + 0(M) (30)

H(tn) = #(*n-l) + H(tn-l)& + 0(AQ (31)

where 0(At) represents a matrix of higher-order terms

lim OW = o
A«-^0 A^

Substituting (29, 30, and 31) into (16) and taking limits as A^
approaches zero yields a Riccati equation for P(t)

P = FP + PFT + Q - + + Q)HT] X
H(FP + Q)] (32)

where it is understood that all matrices are functions of time.
Similarly, substitution into (18) obtains an expression for
A(t)

A = [PH? + (PFT + Q)HT][HQHT]-* (33)
For the time being it is also assumed that HQHT is nonsingu-
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become

(I-AH)F-AH-AH
r ,./ot y -n+*xj

Fig. 1 Optimum filter.

lar. The problem of singular HQHT matrices will be treated in
Sec. V. From (32) and the definitions of F, Q, and H, the
covariance matrix has a continuous derivative and hence A
has a continuous derivative. Thus the assumptions made
in writing (27) and (28) are validated.

The entire set of filter equations can now be written out as
follows:

x = y + Am (34)

y = [(I - AH)F - AH - AH]x (35)

A = [PHT + (PFT + Q)HT][HQHT}-1 (36)

P =. FP + + Q - A[HP + H(FP + Q)] (37)
Equations (34) and (35) determine the basic filter configura-
tion as shown in Fig. 1. The weighting matrix A is deter-
mined from (36), which requires P from the solution of the
Riccati equation (37).

Figure 1 also demonstrates that the correlated measure-
ment noise filter has a form significantly different from the
Kalman-Bucy filter. In particular, the measurement process
appears directly in the estimate, after transformation by the
matrix A, whereas in the white noise case, only integrals of the
measurements appear in the estimate. This difference in form
results in singular filter equations when the white noise filter
is applied to correlated measurement noise problems.

V. Singular HQHT Matrices

The matrix HQHT must be nonsingular if the methods of
Sec. IV are to be applied. Physically this matrix represents
the strength of first integrals of white noise in the measure-
ments. Singularity of HQHT implies that there exists a linear
transformation of the measurement vector such that one or
more components of the transformed vector contain no first
integrals of white noise.

Singularities can occur for two reasons. First, if one (or
more) of the rows of H is a linear combination of other rows,
then HQHT is singular. This difficulty is readily eliminated by
ignoring the measurement associated with the linearly de-
pendent row, since it is redundant and provides no additional
information to the filter. Hence measurements that are linear
combinations of other measurements are eliminated until the
H matrix contains only linearly independent rows.

The second cause of singularity occurs when one of the
measurements is separated from white noise by two or more
integrations. The simple example system shown in Fig. 2
will serve to illustrate the difficulty. An estimator for xi is
desired. Inputs q\ and q% are independent white noises with
strengths Qi and Q<i. If the state vector is defined as

X =

then the H and Q matrices are

H = [0 0 1]
[~Qi 0 0"|

, Q= 0 Q2 0
LO 0 OJ

and HQHT = 0 is a singular matrix of dimension one. Ref-
erence to Fig. 2 shows that the measurement x* is separated
from white noise by two integrals. However, x$ is the inte-
gral of X2j so X2 can be constructed perfectly (at least in theory)
by differentiating z3. If this is done, the filter has x2 available
to estimate XL The state vector and H and Q matrices then

,.M
Lz2J

,-p Q .[*.«]
LO Q2J

so HQHT = Q2, which is positive. Thus the filter must be
preceded by a differentiator to obtain x2 as the filter input.
In the general case one or more differentiations may be re-
quired to eliminate the singularity problem.

The procedures outlined previously do not compromise the
optimality of the filter. Eliminating linearly dependent
measurements or differentiating measurements does not alter
the information content of the measurement data since the
original measurements can be reconstructed perfectly.

VI. Reduction of the Filter Dimension

From the definitions of Sec. II the measurement vector is a
linear combination of elements of the state

m(t) = H(t)x(t)
Hence each element of m(t) represents a perfect measurement
of the projection of the state in the direction of the correspond-
ing row of H(t). If a coordinate system for the state space is
chosen so that some of the basis vectors lie in the directions of
the rows of H(t), then the measurements m(t) will eliminate
estimation errors in those vector directions. Hence certain of
the state variables will always be estimated perfectly and the-
corresponding rows and columns of the P matrix will be-
identically zero. The resulting filter calculations are then
simplified and the dimension of the filter state is reduced by
the dimension of the measurement vector. This technique is
illustrated in the example problem of Sec. VIII.

VII. Initial Conditions

In order to completely specify the optimal filter, initial
conditions must be obtained for y(t) and P(t). If filtering is-
begun at time zero +, then, before any measurement data are
available,

P(0) = E[[x(ff) -
From Eq. (14), just after measurement data is available, the
estimate is
$(0+) = *(0) +

Similarly the error covariance becomes

P(0+) = P(0) -
P(0)ff r(0) [ff (0)P(0)#**(0) ]-*# (O)P(O) (38)

From (34) the initial condition on y(t) is

y(0+) = *(0+) - A(0)m(0) (39)
where

x

i (40)
Thus the initial condition on the filter is dependent upon the
initial measurement and cannot be determined a priori.

VIII. Example Problem

As a means of demonstrating the application of the theory,
a problem of separating exponentially correlated signal and

Fig. 2 Triple integral plant.
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noise processes is solved. The system is as shown in Fig. 3.
A signal process s(t) is to be estimated from the measurement
process m(f) which is corrupted by correlated measurement
noise n(i). Feedback gains a and /3 are constant. The total
system (signal and noise) is second order and s(t) and n(t)
could be chosen as state variables. For the reasons given in
Sec. VI, however, it is advantageous to choose s(t) and m(t)
.as state variables. They span the state space because n(t)
can be generated by the linear combination

n(t) = m(t) - s(t)
The state vector is denned as

x(t) = a(0

and the two state variables satisfy differential equations

Thus if the white noise statistics are stationary so

E[qi(t)] = 0, E[qi(t)qi(t + r)] = ad(r)

E[q2(t)] = 0, E[q2(t)qs(t + r)] = bd(r)

E[qi(f)q*(t + T)] = 0

then the F, Q, H, and H matrices become

F =

(41)

(42)

(43)

(44)

(45)

H = [0 1], H = [0 0]
Now xz(t) is, by definition, the measurement available to the
•estimator. If the four elements of the error covariance matrix
are defined as

(46)

(47)

P =

then, since x2(0 is known without error,

Pl2@) = P2l(t) = Pto(t) = 0

and only pn need be calculated. Applying (45) and (47) to
(37) obtains the differential equation

Pn = a — 2apn — [(ft — a)pn + a]2/(a + b) (48)
Also, the gain matrix A is calculated from (36) as

8 ~ a}Pl1 + a]/(a + 6)] (49)

and the filter feedback matrix is

{/ - AH)F - AH - AH =

r(«- 13)1(13 - a)pu + a] i(/
(a + b) a j

o i
J - a)(/3pn - pn) + a@

(a + b)

0
(50)

'q2 ( t ) +
j

/dt

-GX

/dt

sit) +_^
signal +'

nit)

noise

Fig. 4 Optimal filter.

Applying these expressions to the filter block diagram (Fig. 1)
and eliminating extraneous signal paths yields the optimal
system shown in Fig. 4 with optimal gains Ci, (72, and (73 given
as

Ci = [(j8 - a)pii + a]/ (a + 6)
C2 = [(0 - aO(0pu - pn) + a ft]/ (a + b)

C, = {(a - 0)[(0 - a)pn + a] /(a + b)} - a

The solution of (48) can be obtained by standard methods,4
obtaining

[(a + fr)o? coshco£ — (ab + ffa) sinhco£]pii(0+) + ab sinhco£
[(ft - aY sinha>«]pii(0+) + (a + 6)co coshatf + (a& + 0a) sinhcoZ

where

Finally, if the system Fig. 3 is in stationary operation when
filtering begins, the initial statistics are

= a/2a,
= E[n(0)] = 0

= b/2/3, = 0

and the initial conditions on pn and y are calculated from
(38-40) as

= ab/2(a/3

- a)/2(a + 6)

db)

Fig. 3 Example system.

IX. Conclusions

A derivation has been presented for the optimum correlated
measurement noise filter. Methods were also described for
handling singular problems and reducing filter complexity.
Appropriate initial conditions were derived and an example
problem served to demonstrate application of the results to a
filtering problem.
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